Pricing of Cyber Insurance Contracts in a Network Model

Stefan Weber

Leibniz Universität Hannover

www.stochastik.uni-hannover.de

(joint work with Matthias Fahrenwaldt & Kerstin Weske)

WU Wien - December 13, 2017

Motivation

- Cyber risks pose a large threat to businesses and governments
- ullet Estimated global loss per year pprox 400 billion USD¹
- Dimensions of cyber risk
 - ► Causes: Human errors; technical failures; insider/hacker attacks
 - Damage: Lost, stolen or corrupted data; damage to firms' or governments' operations, property and reputation; severe disruption of critical infrastructure; physical damage, injury to people and fatalities
 - Risk assessment: Analysis of critical scenarios; stochastic cyber model and statistical evaluation
 - Mitigation: Modify system technology; develop emergency plan; insurance solutions

 $^{^{1}}$ Center for Strategic & International Studies (2014)/ Llloyds of London CEO Inga Beale (2015)

Motivation

- Cyber risks pose a large threat to businesses and governments
- ullet Estimated global loss per year pprox 400 billion USD¹
- Dimensions of cyber risk
 - Causes: Human errors; technical failures; insider/hacker attacks
 - Damage: Lost, stolen or corrupted data; damage to firms' or governments' operations, property and reputation; severe disruption of critical infrastructure; physical damage, injury to people and fatalities
 - Risk assessment: Analysis of critical scenarios; stochastic cyber model and statistical evaluation
 - Mitigation: Modify system technology; develop emergency plan; insurance solutions

¹Center for Strategic & International Studies (2014)/ Llloyds of London CEO Inga Beale (2015)

Motivation (2)

- Actuarial challenges of cyber risk
 - Data:

Data is not available in the required amount or in the desired granularity

Non-stationarity:

Technology and cyber threats are evolving fast

Accumulation risks:

The typical insurance independence assumption does not hold, but there is no simple geographical distinction between dependent groups as, for example, in the case of NatCat

Motivation (3)

- We consider the special case of infectious cyber threats,
 e.g., viruses and worms
- Example:

WannaCry infected more than 230.000 computers in 150 countries in May 2017

Our main contribution

A mathematical model for infectious cyber threats and cyber insurance

- Stochastic model based on IPS and marked point processes
- We suggest higher-order mean-field approximations
- ▶ Insurance application: premiums can be calculated
- Systemic risk: we analyze the influence of the network structure

Motivation (3)

We consider the special case of infectious cyber threats,
 e.g., viruses and worms

Example:

WannaCry infected more than 230.000 computers in 150 countries in May 2017

Our main contribution

A mathematical model for infectious cyber threats and cyber insurance

- Stochastic model based on IPS and marked point processes
- We suggest higher-order mean-field approximations
- Insurance application: premiums can be calculated
- Systemic risk: we analyze the influence of the network structure

Model Idea

• Infection spread process:

- Agents are connected in a network
- Infections spread from neighbor to neighbor and are cured independently
- \rightarrow Continuous time Markov process, i.e., SIS/contact process

Insurance claims processes:

- Infected nodes are vulnerable to cyber attacks that occur at random times and generate losses of random size
- → Marked point process
- A (re-)insurance company covers a function of the nodes' losses

Outline

- Spread Process
- 2 Claims Process
- Mean-Field Approximation
- 4 Case Studies
- **5** Conclusion

Outline

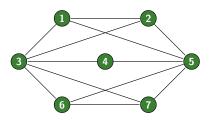
- 1 Spread Process
- Claims Process
- 3 Mean-Field Approximation
- 4 Case Studies
- Conclusion

Network of Agents

- N interconnected agents, labeled 1, 2, ..., N
 (e.g., corporations, systems of computers, or single devices)
- Connections: Network without self-loops, represented by a (symmetric) adjacency matrix $A \in \{0,1\}^{N \times N}$ $(a_{ii} = 0)$
 - ▶ $a_{ij} = 1$: connection between node i and j,
 - ▶ $a_{ij} = 0$: i and j are not directly connected

Example:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$



Spread Process (1)

- SIS-model (Susceptible-Infected-Susceptible)
 - At each point in time, node i can be in one of **two states** $X_i(t) \in \{0,1\}$:
 - $\succ X_i(t) = 1$: node i is infected = vulnerable to cyber attacks,
 - $ightharpoonup X_i(t) = 0$: node i is susceptible at time t
- Each node changes its state at a random time with a rate that may depend on the states of other nodes

Key parameters:

- $\beta > 0$ (infection rate),
- $\delta > 0$ (curing rate)

Nodes are infected by their infected neighbors, and infected nodes are cured independently from other nodes:

- $\blacktriangleright X_i: 0 \to 1; \ \beta \sum_{j=1}^N a_{ij} X_j(t)$ (Infection),
- $X_i: 1 \to 0$; δ (Curing)

Spread Process (2)

Definition

The **spread process** X is a Feller process on the configuration space $E = \{0,1\}^N$ defined by the generator $G: C(E) \to \mathbb{R}$ with

$$Gf(x) = \sum_{i=1}^{N} \left(\beta(1-x_i)\sum_{j=1}^{N} a_{ij}x_j + x_i\delta\right) (f(x^i) - f(x)), \quad x \in E, \ f \in C(E),$$

where $x_i^i = x_j$ for $i \neq j$ and $x_i^i = 1 - x_i$

Outline

- Spread Process
- 2 Claims Process
- Mean-Field Approximation
- 4 Case Studies
- Conclusion

Claims Process

- Mechanism
 - ▶ The spread process X does not directly cause any damage
 - ▶ The system as a whole is subject to randomly occurring cyber attacks
 - A node is affected by a cyber attack at time t if and only if it is infected = vulnerable at time t
- Mathematical Model
 - ▶ Number of attacks: counting process $M = (M(t))_{t \ge 0}$
 - \star ... with stochastic intensity $(\lambda(t))_{t\geq 0}$
 - \star ... independent of X
 - ▶ Loss sizes: nonnegative process $L = (L(t))_{t \ge 0}$
 - \star ... independent of X
 - * ... with $L(t) = (L_1(t), ..., L_N(t))^{\top}$
 - ★ Losses of an attack at time t are captured by:

$$L(t) \circ X(t) = (L_1(t)X_1(t), \dots, L_N(t)X_N(t))^{\top}$$

Expected Aggregate Losses

- For any time t, the insurance contract is characterized by a function $f(\cdot;\cdot): \mathbb{R}_+ \times \mathbb{R}_+^N \to \mathbb{R}_+$:
- The insurance company covers $f(t; L(t) \circ X(t))$, if a loss event occurs at time t
- \rightarrow The expected aggregate losses of the insurance company over time window [0, T] are given by:

$$\mathbb{E}\left[\int_0^T f(t; L(t) \circ X(t)) dM(t)\right] = \mathbb{E}\left[\int_0^T f(t; L(t) \circ X(t)) \lambda(t) dt\right]$$
(1)

• Question: Explicit calculation?

Example: Proportional Insurance

Let f describe a proportional insurance contract, i.e.,

$$f(t; L(t) \circ X(t)) = \sum_{i=1}^{N} \alpha_i L_i(t) X_i(t)$$

In this case, eq. (1) becomes

$$\mathbb{E}\left[\int_0^T f(t; L(t) \circ X(t)) dM(t)\right] = \mathbb{E}\left[\int_0^T f(t; L(t) \circ X(t)) \lambda(t) dt\right]$$
$$= \int_0^T \sum_{i=1}^N \alpha_i \cdot \mathbb{E}[X_i(t)] \cdot \mathbb{E}[L_i(t) \lambda(t)] dt$$

 \rightarrow For linear claim functions, only the first moments $\mathbb{E}[X_i(t)]$ of the spread process are needed in order to calculate the expected aggregate losses

Example: Proportional Insurance

Let f describe a proportional insurance contract, i.e.,

$$f(t; L(t) \circ X(t)) = \sum_{i=1}^{N} \alpha_i L_i(t) X_i(t)$$

In this case, eq. (1) becomes

$$\mathbb{E}\left[\int_0^T f(t; L(t) \circ X(t)) dM(t)\right] = \mathbb{E}\left[\int_0^T f(t; L(t) \circ X(t)) \lambda(t) dt\right]$$
$$= \int_0^T \sum_{i=1}^N \alpha_i \cdot \mathbb{E}[X_i(t)] \cdot \mathbb{E}[L_i(t) \lambda(t)] dt$$

 \rightarrow For linear claim functions, only the first moments $\mathbb{E}[X_i(t)]$ of the spread process are needed in order to calculate the expected aggregate losses

General Claims

• Non-linear claim functions f can be uniformly approximated by polynomials of a chosen degree n_p in probability

Basic idea:

- By the theorem of Stone-Weierstraß, any continuous f can be uniformly approximated by polynomials on any compact set
- ► The compact set is chosen such that the probability of the argument being outside the compact is sufficiently small

This leads to expressions of the following form:

$$\begin{split} \int_0^T \mathbb{E} \left(\mathbb{1}_{[0,u]} (\Lambda(L)) \cdot \lambda(t) \cdot \sum_{i=1}^N \left[a_0 + a_1 \sum_{i_1=1}^N b_{i_1} L_{i_1} \mathbb{E}[X_{i_1}] + a_2 \sum_{i_1=1}^N \sum_{i_2=1}^N b_{i_1} b_{i_2} L_{i_1} L_{i_2} \mathbb{E}[X_{i_1} X_{i_2} + \dots + a_n \rho \sum_{i_1=1}^N \sum_{i_2=1}^N \cdots \sum_{i_n \rho = 1}^N b_{i_1} b_{i_2} \cdots b_{i_n \rho} + L_{i_1} L_{i_2} \cdots L_{i_n \rho} \cdot \mathbb{E}[X_{i_1} X_{i_2} \cdots X_{i_n \rho}] \right] \right) dt \end{split}$$

 \rightarrow Only moments up to order n_p of the spread process (i.e., $\mathbb{E}[X_{i_1}(t)\cdots X_{i_k}(t)]$ for $i_j\in\{1,\ldots,N\}$ and $k\leq n_p$) are required for the computation of the expected aggregate losses

General Claims

• Non-linear claim functions f can be uniformly approximated by polynomials of a chosen degree n_p in probability

Basic idea:

- ▶ By the theorem of **Stone-Weierstraß**, any continuous *f* can be uniformly approximated by polynomials on any compact set
- ► The compact set is chosen such that the probability of the argument being outside the compact is sufficiently small

This leads to expressions of the following form:

$$\int_{0}^{T} \mathbb{E} \left(\mathbb{1}_{[0,u]}(\Lambda(L)) \cdot \lambda(t) \cdot \sum_{i=1}^{N} \left[a_{0} + a_{1} \sum_{i_{1}=1}^{N} b_{i_{1}} L_{i_{1}} \mathbb{E}[X_{i_{1}}] + a_{2} \sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} b_{i_{1}} b_{i_{2}} L_{i_{1}} L_{i_{2}} \mathbb{E}[X_{i_{1}} X_{i_{2}}] \right] + \dots + a_{nP} \sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} \cdots \sum_{i_{n}=1}^{N} b_{i_{1}} b_{i_{2}} \cdots b_{i_{nP}} \cdot L_{i_{1}} L_{i_{2}} \cdots L_{i_{nP}} \cdot \mathbb{E}[X_{i_{1}} X_{i_{2}} \cdots X_{i_{nP}}] \right) dt$$

 \rightarrow Only moments up to order n_p of the spread process (i.e., $\mathbb{E}[X_{i_1}(t)\cdots X_{i_k}(t)]$ for $i_j\in\{1,\ldots,N\}$ and $k\leq n_p$) are required for the computation of the expected aggregate losses

General Claims (2)

For both linear and non-linear claim functions:

- Key issue when computing the expected aggregate losses:
 - Calculate moments of X
 - Due to Kolmogorov's equations, these are characterized by ODE systems
- Challenge:
 - Direct calculation of moments is hardly tractable for realistic network sizes due to very large ODE systems
- Suggestion
 Mean-field approximation of the moments of the spread pr

General Claims (2)

For both linear and non-linear claim functions:

- Key issue when computing the expected aggregate losses:
 - Calculate moments of X
 - Due to Kolmogorov's equations, these are characterized by ODE systems

Challenge:

- Direct calculation of moments is hardly tractable for realistic network sizes due to very large ODE systems
- Suggestion

Mean-field approximation of the moments of the spread process

Outline

- 1 Spread Process
- Claims Process
- 3 Mean-Field Approximation
- 4 Case Studies
- Conclusion

First Order Mean-Field Approximation (1)

• ODEs of time-derivatives of first moments $\mathbb{E}[X_i(t)]$:

$$\frac{d\mathbb{E}[X_i(t)]}{dt} = -\delta\mathbb{E}[X_i(t)] + \beta \sum_{j=1}^N a_{ij}\mathbb{E}[X_j(t)] - \beta \sum_{j=1}^N a_{ij}\mathbb{E}[X_i(t)X_j(t)], \quad i = 1, 2, \dots, N$$

- Problem: Joint second moments keep the system from being closed
- Incorrectly factorize the second moments

$$\mathbb{E}[X_i(t)X_j(t)] \approx F(\mathbb{E}[X_i(t)]) \cdot F(\mathbb{E}[X_j(t)]$$

with a suitably chosen function $F:[0,1]\to [0,1]$, e.g., F(x)=x

First Order Mean-Field Approximation (1)

• ODEs of time-derivatives of first moments $\mathbb{E}[X_i(t)]$:

$$\frac{d\mathbb{E}[X_i(t)]}{dt} = -\delta\mathbb{E}[X_i(t)] + \beta\sum_{j=1}^N a_{ij}\mathbb{E}[X_j(t)] - \beta\sum_{j=1}^N a_{ij}\mathbb{E}[X_i(t)X_j(t)], \quad i = 1, 2, \dots, N$$

- Problem: Joint second moments keep the system from being closed
- Ansatz:

Incorrectly factorize the second moments

$$\mathbb{E}[X_i(t)X_j(t)] \approx F(\mathbb{E}[X_i(t)]) \cdot F(\mathbb{E}[X_j(t)])$$

with a suitably chosen function $F:[0,1]\to [0,1]$, e.g., F(x)=x

First Order Mean-Field Approximation (2)

Definition

The first order mean-field approximation $z_i^{(1)}$ corresponding to the mean-field function F is defined as the solution to the following system of ODEs:

$$rac{d z_i^{(1)}(t)}{dt} = -\delta z_i^{(1)}(t) + eta \sum_{j=1}^N a_{ij} z_i^{(1)}(t) - eta \sum_{j=1}^N a_{ij} F(z_i^{(1)}(t)) \cdot F(z_j^{(1)}(t)),$$

for
$$i = 1, \ldots, N$$

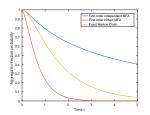
- The choice of F(x) = x leads to an upper bound, the choice of $F(x) = \sqrt{x}$ to a lower bound approximation of the exact moment
- For certain parameter choices, the approximation error decreases exponentially in time

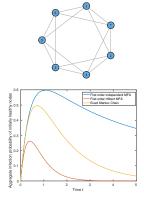
First Order Mean-Field Approximation (3)

 The accuracy of first order mean-field approximations is typically low, if interaction is sufficiently strong

• Example:

We consider a regular network with N=7 nodes and degree d=4





n-th Order Mean-Field Approximation (1)

- In order to achieve higher accuracy, we extend this idea and construct mean-field approximations of order $n: (z_1^{(n)})_{1 \subseteq \{1,2,\dots,N\}, |I| \le n}$
- This increases the complexity of the approximation
- Methodology
 - ▶ Define the product $X_I := \prod_{i \in I} X_i$ for $I \subseteq \{1, 2, ..., N\}$. Since the components of X are commutative and idempotent, we may neglect the order of the indices or powers of its components
 - As a consequence of Kolmogorov's forward equations, the dynamics of the moments (E[X_I])_{I⊆{1,2,...,N}} are described by a coupled system of 2^N − 1 ODEs
 - Approximation

Focus only on $(E[X_I])_{I\subseteq\{1,2,\ldots,N\},\ |I|\leq n}$

- ① |I| < n:
 ODE for $\frac{d}{dt}z_1^{(n)}$ is exact ODE for $\frac{d}{dt}E[X_I]$
- ODE for $\frac{d}{dt}z_l^{(n)}$ is approximation obtained by (incorrectly) factorizing moments of order n+1

n-th Order Mean-Field Approximation (1)

- In order to achieve higher accuracy, we extend this idea and construct mean-field approximations of order $n: (z_l^{(n)})_{l \subseteq \{1,2,\dots,N\}, |l| \le n}$
- This increases the complexity of the approximation
- Methodology
 - ▶ Define the product $X_I := \prod_{i \in I} X_i$ for $I \subseteq \{1, 2, ..., N\}$. Since the components of X are commutative and idempotent, we may neglect the order of the indices or powers of its components
 - As a consequence of Kolmogorov's forward equations, the dynamics of the moments (E[X_I])_{I⊆{1,2,...,N}} are described by a coupled system of 2^N − 1 ODEs
 - ▶ Approximation Focus only on $(E[X_I])_{I\subseteq\{1,2,...,N\}, |I|\leq n}$
 - ① |I| < n:
 ODE for $\frac{d}{dt} z_I^{(n)}$ is exact ODE for $\frac{d}{dt} E[X_I]$
 - ODE for $\frac{d}{dt}z_i^{(n)}$ is approximation obtained by (incorrectly) factorizing moments of order n+1

n-th Order Mean-Field Approximation (1)

- In order to achieve higher accuracy, we extend this idea and construct mean-field approximations of order n: (z_i⁽ⁿ⁾)<sub>i \subseteq \{1,2,...,N\}, |i| \subsete n\}
 </sub>
- This increases the complexity of the approximation
- Methodology
 - ▶ Define the product $X_I := \prod_{i \in I} X_i$ for $I \subseteq \{1, 2, ..., N\}$. Since the components of X are commutative and idempotent, we may neglect the order of the indices or powers of its components
 - As a consequence of Kolmogorov's forward equations, the dynamics of the moments (E[X_I])_{I⊆{1,2,...,N}} are described by a coupled system of 2^N − 1 ODEs
 - Approximation

Focus only on $(E[X_I])_{I\subseteq\{1,2,...,N\},\ |I|\leq n}$

- ① |I| < n:
 ODE for $\frac{d}{dx}z_1^{(n)}$ is exact ODE for $\frac{d}{dx}E[X_1]$
- ② |I| = n:
 ODE for $\frac{d}{dt}z_1^{(n)}$ is approximation obtained by (incorrectly) factorizing moments of order n+1

n-th Order Mean-Field Approximation (2)

$$|I| = n$$

- Choose the following two objects:
 - lacksquare a mean-field function $F:[0,1] \rightarrow [0,1]$ and
 - a partition scheme (l_1, l_2) such that for $j \notin I$ we have $I \cup \{j\} = l_1(I, j) \cup l_2(I, j)$ with non-empty $l_1(j) = l_1(I, j), l_2(j) = l_2(I, j)$
- This leads to the following approximation:

$$\frac{d}{dt}\mathbb{E}[X_{I}] = -n\delta\mathbb{E}[X_{I}] + \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij}\mathbb{E}[X_{I \setminus \{i\} \cup \{j\}}] - \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij}\mathbb{E}[X_{I \cup \{j\}}]$$

$$\approx -n\delta\mathbb{E}[X_{I}] + \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij}\mathbb{E}[X_{I \setminus \{i\} \cup \{j\}}] - \beta \sum_{i \in I} \sum_{j=1, j \in I}^{N} a_{ij}\mathbb{E}[X_{I \setminus \{i\} \cup \{j\}}]$$

$$-\beta \sum_{i \in I} \sum_{j=1, j \notin I}^{N} a_{ij} \cdot F\left(\mathbb{E}[X_{I_{1}(j)}]\right) \cdot F\left(\mathbb{E}[X_{I_{2}(j)}]\right).$$

n-th Order Mean-Field Approximation (2)

$$|I| = n$$

- Choose the following two objects:
 - **1** a mean-field function $F:[0,1] \rightarrow [0,1]$ and
 - 2 a partition scheme (I_1, I_2) such that for $j \notin I$ we have $I \cup \{j\} = I_1(I, j) \cup I_2(I, j)$ with non-empty $I_1(j) = I_1(I, j), I_2(j) = I_2(I, j)$
- This leads to the following approximation:

$$\begin{split} \frac{d}{dt}\mathbb{E}[X_{I}] &= -n\delta\mathbb{E}[X_{I}] + \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij}\mathbb{E}[X_{I \setminus \{i\} \cup \{j\}}] - \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij}\mathbb{E}[X_{I \cup \{j\}}] \\ &\approx -n\delta\mathbb{E}[X_{I}] + \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij}\mathbb{E}\left[X_{I \setminus \{i\} \cup \{j\}}\right] - \beta \sum_{i \in I} \sum_{j=1, j \in I}^{N} a_{ij}\mathbb{E}[X_{I}] \\ &-\beta \sum_{i \in I} \sum_{j=1, j \notin I}^{N} a_{ij} \cdot F\left(\mathbb{E}[X_{I_{1}(j)}]\right) \cdot F\left(\mathbb{E}[X_{I_{2}(j)}]\right). \end{split}$$

n-th Order Mean-Field Approximation (3)

|I| < n

• In the approximate ODE system, the ODE for $\frac{d}{dt}z_I^{(n)}$ is the exact ODE for $\frac{d}{dt}E[X_I]$:

$$\frac{d}{dt}\mathbb{E}[X_I] = -n\delta\mathbb{E}[X_I] + \beta\sum_{i\in I}\sum_{j=1}^N a_{ij}\mathbb{E}\left[X_{I\setminus\{i\}\cup\{j\}}\right] - \beta\sum_{i\in I}\sum_{j=1}^N a_{ij}\mathbb{E}\left[X_{I\cup\{j\}}\right]$$

→ n-th order approximation with

$$\begin{split} |I| &= n: \quad \dot{z}_{I}^{(n)} = -\left(n\delta + \beta \sum_{i \in I} \sum_{j=1, j \in I}^{N} a_{ij}\right) z_{I}^{(n)} + \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij} z_{I \setminus \{i\} \cup \{j\}}^{(n)} \\ &- \beta \sum_{i \in I} \sum_{j=1, j \notin I}^{N} a_{ij} F\left(z_{I_{1}(j)}^{(n)}\right) \cdot F\left(z_{I_{2}(j)}^{(n)}\right) \\ |I| &< n: \quad \dot{z}_{I}^{(n)} = -n\delta z_{I}^{(n)} + \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij} z_{I \setminus \{i\} \cup \{j\}}^{(n)} - \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij} z_{I \cup \{j\}}^{(n)} \end{split}$$

n-th Order Mean-Field Approximation (3)

|I| < n

• In the approximate ODE system, the ODE for $\frac{d}{dt}z_l^{(n)}$ is the exact ODE for $\frac{d}{dt}E[X_l]$:

$$\frac{d}{dt}\mathbb{E}[X_I] = -n\delta\mathbb{E}[X_I] + \beta\sum_{i\in I}\sum_{j=1}^N a_{ij}\mathbb{E}\left[X_{I\setminus\{i\}\cup\{j\}}\right] - \beta\sum_{i\in I}\sum_{j=1}^N a_{ij}\mathbb{E}\left[X_{I\cup\{j\}}\right]$$

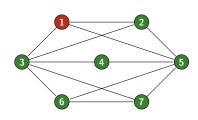
→ n-th order approximation with

$$\begin{split} |I| &= n: \quad \dot{z}_{I}^{(n)} = -\left(n\delta + \beta \sum_{i \in I} \sum_{j=1, j \in I}^{N} a_{ij}\right) z_{I}^{(n)} + \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij} z_{I \setminus \{i\} \cup \{j\}}^{(n)} \\ &- \beta \sum_{i \in I} \sum_{j=1, j \notin I}^{N} a_{ij} F\left(z_{I_{1}(j)}^{(n)}\right) \cdot F\left(z_{I_{2}(j)}^{(n)}\right) \\ |I| &< n: \quad \dot{z}_{I}^{(n)} = -n\delta z_{I}^{(n)} + \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij} z_{I \setminus \{i\} \cup \{j\}}^{(n)} - \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij} z_{I \cup \{j\}}^{(n)} \end{split}$$

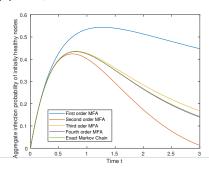
n-th Order Mean-Field Approximation (4)

- The n-th order mean-field approximation yields approximations of all moments of X up to order n:
 - n-th moments enable us to compute expected aggregate losses for non-linear claim functions
- The n-th order approximation also yields improved approximations of the first order moments, i.e., infection probabilities of each node

Example: Aggregate infection probability of initially healthy nodes in the *n*-th order mean-field approximation for n = 1, 2, 3, 4, F(x) = x, $\beta = 0.5$ and $\delta = 1.817$



Initial state of the infection

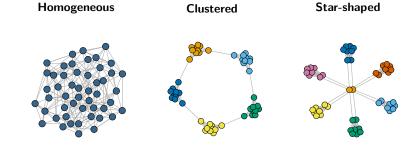


Outline

- 1 Spread Process
- 2 Claims Process
- Mean-Field Approximation
- 4 Case Studies
- Conclusion

Network Scenarios

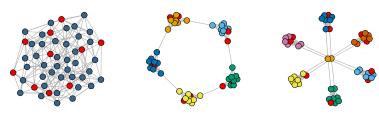
We consider three different stylized network scenarios



- The number of nodes and the degree of each node are equal in all scenarios (N=50,d=7)
- ightarrow We are comparing the impact of the network topology

Simulation Setup

• We initially infect 20% of the nodes in the networks:



- ullet For the spread process, we choose: eta=0.5, $\delta=3.51$
- \bullet Cyber attacks occur at the jumps of a homogeneous Poisson process with rate $\lambda=3$
- ullet Losses at each vulnerable node are exponentially distributed with mean $\mu=2$
- Approximation of expected aggregate losses of the insurance company in [0, 3] on the basis of
 - mean-field approximations for the moments of the spread process,
 - ► Monte-Carlo simulations of the claims processes

Example: Aggregate Losses

Total loss coverage, i.e., the treaty function $f(t, \cdot)$ is given by

$$f(t,L(t)\circ X(t)):=\sum_{i=1}^N L_i(t)X_i(t)$$

→ Estimated expected aggregate losses:

Losses: Total coverage	Homogeneous	Clustered	Star	
First order MFA	96.4671	97.6170	96.5425	
Second order MFA	51.4911	39.7776	39.4127	
Third order MFA	77.8349	70.6588	68.0767	
Fourth order MFA	68.0676	61.3693	59.9005	

Example: Excess of Loss per Risk – XL

XL, i.e., the treaty function $f(t, \cdot)$ is given by

$$f(t,L(t)\circ X(t)):=\sum_{i=1}^N\min\{L_i(t),2\}\cdot X_i(t)$$

→ Estimated expected insurance losses:

Losses: XL	Homogeneous	Clustered	Star
First order MFA	60.9795	61.7036	61.0247
Second order MFA	32.5475	25.1401	24.9105
Third order MFA	49.2010	44.6618	43.0300
Fourth order MFA	43.0265	38.7894	37.8615

Outline

- 1 Spread Process
- Claims Process
- Mean-Field Approximation
- 4 Case Studies
- **5** Conclusion

Conclusion

- Model for pricing cyber insurance
- Cyber losses that are triggered by two underlying risk processes:
 - ▶ a cyber infection ↔ interacting Markov chain
 - ▶ cyber attacks on vulnerable sites ↔ marked point process
- Due to the large dimension of the system, the computation of expected aggregate insurance losses and pricing of cyber contracts is challenging:
 - polynomial approximation of non-linear claim functions
 - ▶ *n*-th order mean-field approximation of moments of the spread process
- Numerical case studies demonstrate:
 - Significant impact of network topology
 - Higher order mean-field approximations improve accuracy

Thank you for your attention!